1/2

Anuj Apte $\gg +1$ (617) 949 0154 •

🖂 🖂 apteanuj@uchicago.edu 🔹 🗂 apteanuj.github.io

Education

University of Chicago Ph.D. Candidate in Physics Research Interests: Deep Learning, AI for Science, Quantum Computing University of Chicago

M.S. in Physics Selected Coursework: Generative Models · Deep Learning Systems · Machine Learning for Molecular Modeling Quantum Information and Computation · Implementation of Quantum Processors

Massachusetts Institute of Technology B.S. in Physics and Philosophy

Skills

Programming Languages: Python, C++, CUDA, Mathematica Deep Learning Libraries: JAX, Pytorch, TensorFlow Quantum Computing Libraries: Qiskit, Cirq, Pennylane Tools and Platforms: Git. Slurm. AWS EC2

Research Experience

Department of Physics, University of Chicago

Graduate Research Fellow

 Developed Equivariant Convolutional Neural Networks using JAX for precise learning of lattice quantum systems, achieving state-of-the-art performance.

in apteanuj

- Used Optax to train these models, leveraging **Slurm** for managing the training runs on Midway supercomputer.
- Applied transfer learning to compute the phase diagram, showing for the very first time showed that critical exponents can be calculated to high accuracy.

Applied Research, JP Morgan Chase

Summer Research Associate

- Devised novel quantum algorithms for solving complex combinatorial optimization problems, using Chebyshev interpolation to achieve better performance in fewer circuit evaluations.
- Conducted large-scale parallelized GPU simulations of quantum algorithms on EC2 servers, optimizing resource allocation.

IBM Research

Research Intern

- Developed a deterministic technique for measurement error mitigation, leading to a 10x reduction in errors on quantum hardware.
- Implemented a Python software tool focusing on performance optimization and scalability to hundreds of qubits, ensuring compatibility with **Qiskit** runtime environments.
- Demonstrated the use of this method on IBM's largest 433-qubit 'Osprey' quantum processor, validating effectiveness at scale.

Chicago, IL

07/2020-Present

Cambridge, MA 2016-2020

2022-June 2025 Chicago, IL

Chicago, IL

2020-2022

New York. NY 06/2024-09/2024

Yorktown Heights, NY

05/2023-08/2023

- Apte, A., Córdova, C., Lam, H. T., "Obstructions to gapped phases from noninvertible symmetries". In: [2] Physical Review B (2023).
- [3] De Prins, R., Yao, Y., Apte, A., Miatto, F. M., "A Quadratic Speedup in the Optimization of Noisy Quantum Optical Circuits". In: Quantum (2023).
- Kremenetski, V., Apte, A., Hogg, T., Hadfield, S., Tubman, N. M., "Quantum Alternating Operator Ansatz [4] (QAOA) beyond low depth with gradually changing unitaries". In: arXiv preprint arXiv:2305.04455 (2023).
- [5] Liu, M., Liu, J., Liu, R., Makhanov, H., Lykov, D., Apte, A., Alexeev, Y., "Embedding learning in hybrid quantum-classical neural networks". In: IEEE International Conference on Quantum Computing and Engineering (QCE). 2022.
- [6] Nguyen, T., Han, F., Andrejevic, N., Pablo-Pedro, R., Apte, A., Tsurimaki, Y., Ding, Z., Zhang, K., Alatas, A., Alp, E. E., "Topological singularity induced chiral Kohn anomaly in a Weyl semimetal". In: Physical Review Letters (2020).
- [7] Hughes, S. A., Apte, A., Khanna, G., Lim, H., "Learning about black hole binaries from their ringdown spectra". In: *Physical Review Letters* (2019).

Xanadu Quantum Technologies

Research Resident

- Designed an algorithm for faster simulations of Gaussian photonic circuits, achieving a quadratic speedup over state-of-the-art methods.
- Developed a Python software package implementing this algorithm, ensuring end-to-end differentiability for integration with machine learning models.
- Achieved a **100x speedup** in circuit simulation for GKP qubit preparation, facilitating more efficient quantum simulation.

NASA Quantum Artificial Intelligence Laboratory (QuAIL)

Research Intern

- Developed theoretical models to explain surprising behavior of Quantum Approximate Optimization Algorithm (QAOA) circuits at large depth.
- Conducted extensive simulations on Bridges-2 supercomputer, enabling large scale study of quantum optimization algorithms.
- Analyzed simuations results to provide insights into the scalability and efficiency of pulse-level Variational Quantum **Eigensolver (VQE)** algorithm.

Kavli Institute for Astrophysics and Space Research, MIT

Researcher

- Developed a framework to compute inclined inspiral trajectories into Kerr black holes, enabling a deeper analysis of binary geometries from gravitational wave signals.
- \circ Implemented high-performance C++ and CUDA code to calculate these trajectories and gravitational wave modes efficiently, improving simulations for extreme mass-ratio binaries.

Honors and Awards

- **2022**: Nambu Fellowship, awarded to the highest-rated Ph.D. applicant at the University of Chicago
- **2020**: Inducted into **Phi Beta Kappa**, Massachusetts Institute of Technology
- 2015: Gold Medal, Asian Physics Olympiad, Hangzhou, China
- **2015**: Silver Medal, International Physics Olympiad, Mumbai, India
- 2014: Awarded National Talent Search Examination (NTSE) Scholarship by the Government of India

Selected Publications

- Apte, A., Córdova, C., Huang, T.-C., Ashmore, A., "Deep learning lattice gauge theories". In: Physical [1] *Review B* (2024).

12/2016-02/2018

Cambridge, MA

Mountain View, CA

06/2021-09/2021

Toronto, ON 05/2022-08/2022